Excitatory GABA in rodent developing neocortex in vitro.

نویسندگان

  • Sylvain Rheims
  • Marat Minlebaev
  • Anton Ivanov
  • Alfonso Represa
  • Rustem Khazipov
  • Gregory L Holmes
  • Yehezkel Ben-Ari
  • Yuri Zilberter
چکیده

GABA depolarizes immature cortical neurons. However, whether GABA excites immature neocortical neurons and drives network oscillations as in other brain structures remains controversial. Excitatory actions of GABA depend on three fundamental parameters: the resting membrane potential (Em), reversal potential of GABA (E(GABA)), and threshold of action potential generation (Vthr). We have shown recently that conventional invasive recording techniques provide an erroneous estimation of these parameters in immature neurons. In this study, we used noninvasive single N-methyl-d-aspartate and GABA channel recordings in rodent brain slices to measure both Em and E(GABA) in the same neuron. We show that GABA strongly depolarizes pyramidal neurons and interneurons in both deep and superficial layers of the immature neocortex (P2-P10). However, GABA generates action potentials in layer 5/6 (L5/6) but not L2/3 pyramidal cells, since L5/6 pyramidal cells have more depolarized resting potentials and more hyperpolarized Vthr. The excitatory GABA transiently drives oscillations generated by L5/6 pyramidal cells and interneurons during development (P5-P12). The NKCC1 co-transporter antagonist bumetanide strongly reduces [Cl(-)]i, GABA-induced depolarization, and network oscillations, confirming the importance of GABA signaling. Thus a strong GABA excitatory drive coupled with high intrinsic excitability of L5/6 pyramidal neurons and interneurons provide a powerful mechanism of synapse-driven oscillatory activity in the rodent neocortex in vitro. In the companion paper, we show that the excitatory GABA drives layer-specific seizures in the immature neocortex.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

GABA(A) receptor-mediated miniature postsynaptic currents and alpha-subunit expression in developing cortical neurons.

Previous studies have described maturational changes in GABAergic inhibitory synaptic transmission in the rodent somatosensory cortex during the early postnatal period. To determine whether alterations in the functional properties of synaptically localized GABA(A) receptors (GABA(A)Rs) contribute to development of inhibitory transmission, we used the whole cell recording technique to examine GA...

متن کامل

GABAergic inhibition suppresses paroxysmal network activity in the neonatal rodent hippocampus and neocortex.

In the adult cerebral cortex, the neurotransmitter GABA is strongly inhibitory, as it profoundly decreases neuronal excitability and suppresses the network propensity for synchronous activity. When fast, GABA(A) receptor (GABA(A)R)-mediated neurotransmission is blocked in the mature cortex, neuronal firing is synchronized via recurrent excitatory (glutamatergic) synaptic connections, generating...

متن کامل

Excitatory actions of GABA in the intact neonatal rodent hippocampus in vitro

The excitatory action of gamma-aminobutyric acid (GABA) is considered to be a hallmark of the developing nervous system. However, in immature brain slices, excitatory GABA actions may be secondary to neuronal injury during slice preparation. Here, we explored GABA actions in the rodent intact hippocampal preparations and at different depths of hippocampal slices during the early post-natal peri...

متن کامل

GABA regulates excitatory synapse formation in the neocortex via NMDA receptor activation.

The development of a balance between excitatory and inhibitory synapses is a critical process in the generation and maturation of functional circuits. Accumulating evidence suggests that neuronal activity plays an important role in achieving such a balance in the developing cortex, but the mechanism that regulates this process is unknown. During development, GABA, the primary inhibitory neurotr...

متن کامل

Contribution of GABAergic Interneurons to the Development of Spontaneous Activity Patterns in Cultured Neocortical Networks

Periodic synchronized events are a hallmark feature of developing neuronal networks and are assumed to be crucial for the maturation of the neuronal circuitry. In the developing neocortex, the early network oscillations coincide with an excitatory action of the neurotransmitter gamma-aminobutyric acid (GABA). A relationship between the emerging inhibitory action of GABA and the gradual disappea...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 100 2  شماره 

صفحات  -

تاریخ انتشار 2008